题目内容
设z=x+y,其中实数x,y满足
,则z的最大值为( )
|
| A、12 | B、6 | C、0 | D、-6 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最大值.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最大,此时z最大.
由
,
解得
,即A(6,6),
代入目标函数z=x+y得z=6+6=12.
即目标函数z=x+y的最大值为12.
故选:A.
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最大,此时z最大.
由
|
解得
|
代入目标函数z=x+y得z=6+6=12.
即目标函数z=x+y的最大值为12.
故选:A.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
已知函数f(x)=x3+3x(x≥0),对于曲线y=f(x)上横坐标成公差为1的等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能为锐角三角形;
④△ABC不可能是等腰三角形,其中所有正确的序号是( )
②△ABC可能是直角三角形;
③△ABC可能为锐角三角形;
④△ABC不可能是等腰三角形,其中所有正确的序号是( )
| A、①② | B、①③ | C、②③ | D、①④ |
A、
| ||
B、
| ||
C、
| ||
D、
|