题目内容
已知函数f(x)=x3+3x(x≥0),对于曲线y=f(x)上横坐标成公差为1的等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能为锐角三角形;
④△ABC不可能是等腰三角形,其中所有正确的序号是( )
②△ABC可能是直角三角形;
③△ABC可能为锐角三角形;
④△ABC不可能是等腰三角形,其中所有正确的序号是( )
| A、①② | B、①③ | C、②③ | D、①④ |
考点:函数的图象,等差数列的通项公式
专题:函数的性质及应用
分析:由于函数f(x)=x3+3x(x≥0),对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,由函数的定义及函数单调性进行判断即可得出正确选项,对于①正确,由函数的图象可以得出,角ABC是钝角,②亦可由此判断出;③④可由变化率判断出.
解答:
解:由于函数f(x)=x3+3x(x≥0),
∴f′(x)=3x2+3>0恒成立,
∴函数f(x)在[0,+∞)为增函数
对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,且横坐标依次增大
由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.(可以采用向量BA乘以向量BC小于零的解法)
可得出∠ABC一定是钝角故①对,②错.
由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,
故三角形不可能是等腰三角形,
由此得出③不对,④对.
故选:D.
∴f′(x)=3x2+3>0恒成立,
∴函数f(x)在[0,+∞)为增函数
对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,且横坐标依次增大
由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.(可以采用向量BA乘以向量BC小于零的解法)
可得出∠ABC一定是钝角故①对,②错.
由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,
故三角形不可能是等腰三角形,
由此得出③不对,④对.
故选:D.
点评:本题考查了数列与函数的综合,求解本题的关键是反函数的性质及其变化规律研究清楚,由函数的图形结合等差数列的性质得出答案.
练习册系列答案
相关题目
函数y=-ln(x+1)的图象大致是( )
| A、 |
| B、 |
| C、 |
| D、 |
设z=x+y,其中实数x,y满足
,则z的最大值为( )
|
| A、12 | B、6 | C、0 | D、-6 |