题目内容

甲乙两名同学参加某种选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:
 第1次第2次第3次第4次第5次
6063758087
5565777889
(1)请计算甲、乙两人成绩的平均数和方差,并据此判断选派谁参赛更好
(2)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,80分以上的个数为ξ,求随机变量ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差,离散型随机变量及其分布列
专题:概率与统计
分析:(1)求出甲、乙两人成绩的平均数和方差,得
.
x
.
x
S2S2,从而甲的平均成绩高且方差小,故选派甲参赛更好.
(2)由已知得ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
解答: 解:(1)
.
x
=
1
5
(60+63+75+80+87)=73,
.
x
=
1
5
(55+65+77+78+89)=72.8,
S2=
1
5
[(60-73)2+(65-73)2+(77-73)2+(78-73)2+(89-73)2]=106,
S2=
1
5
[(55-72.8)2+(65-72.8)2+(77-72.8)2+(78-72.8)2+(89-72.8)2]=136.96,
.
x
.
x
S2S2
∴甲的平均成绩高且方差小,故选派甲参赛更好.
(2)由已知得ξ的可能取值为0,1,2,
P(ξ=0)=
C
1
2
C
1
5
C
1
1
C
1
5
=
2
25

P(ξ=1)=
C
1
3
C
1
5
C
1
1
C
1
5
+
C
1
2
C
1
5
C
1
4
C
1
5
=
11
25

P(ξ=2)=
C
1
3
C
1
5
C
1
4
C
1
5
=
12
25

∴ξ的分布列为:
ξ 0
 P 
2
25
 
11
25
12
25
 
Eξ=0×
2
25
+1×
11
25
+2×
12
25
=
7
5
点评:本题考查平均数和方差的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网