题目内容
7.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{{\sqrt{{S_n}•{S_{n+1}}}}}$,n∈N*,记数列{bn}的前n项和为Tn,证明:Tn<1.
分析 (1)设等差数列{an}的首项为a1,公差为d.运用等差数列的通项公式,可得首项和公差的方程,解方程即可得到所求通项公式;
(2)由等差数列的求和公式,可得Sn,计算${b_n}=\frac{1}{{\sqrt{{n^2}•{{(n+1)}^2}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,再由数列的求和方法:裂项相消求和,以及不等式的性质,即可得证.
解答 解:(1)设等差数列{an}的首项为a1,公差为d.
∵a2=3,S5=25,∴${a_1}+d=3,\frac{{5(2{a_1}+4d)}}{2}=25$,
解得 a1=1,d=2,
∴an=2n-1,n∈N+.
(2)证明:∵an=2n-1,
∴前n项和为Sn=$\frac{1}{2}$n(1+2n-1),
即${S_n}={n^2}$,
∴${b_n}=\frac{1}{{\sqrt{{n^2}•{{(n+1)}^2}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=b1+b2+b3+…+bn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})$=$1-\frac{1}{n+1}<1$.
点评 本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,以及不等式的性质,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
18.
为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:
(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(Ⅰ)完成下列2×2列联表:
| 喜欢旅游 | 不喜欢旅游 | 合计 | |
| 女性 | |||
| 男性 | |||
| 合计 |
附:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Tn是其前n项的积,且T5<T6,T6=T7>T8,则下列结论错误的是( )
| A. | 0<q<1 | B. | a7=1 | ||
| C. | T6与T7均为Tn的最大值 | D. | T9>T5 |
19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,则△ABC的面积为( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{2\sqrt{6}}}{3}$ | D. | $\frac{{4\sqrt{6}}}{3}$ |