题目内容

18.为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:
 喜欢旅游不喜欢旅游合计
女性   
男性   
合计   
(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (Ⅰ)根据等高条形图,计算男、女性不喜欢旅游的人数,填写2×2列联表即可;
(2)根据列联表中数据,计算K2,对照临界值表得出结论.

解答 解:(Ⅰ)根据等高条形图,计算女性不喜欢旅游的人数为50×0.3=15,
男性不喜欢旅游的人数为50×0.5=25,填写2×2列联表如下:

 喜欢旅游不喜欢旅游合计
女性35 15 50 
男性 25 25 50
合计 6040 100 
(2)根据列联表中数据,计算
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100{×(35×25-25×15)}^{2}}{50×50×60×40}$≈4.167<5.024,
对照临界值知,不能在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”.

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网