题目内容
11.为了测试某药物的预防效果,进行动物试验,发现在测试的50只未服药的动物中有20只患病,60只服药的动物中有10只患病.分别利用图形和独立性检验的方法判断药物是否有效 你得到的结论在什么范围内有效.分析 补充列联表,可得等高条形图,计算K2,即可得出结论.
解答 解:根据题目所给数据得到如下列联表:
| 不患病 | 患 病 | 总 计 | |
| 服 药 | 50 | 10 | 60 |
| 未服药 | 30 | 20 | 50 |
| 总 计 | 80 | 30 | 110 |
又∵K2=$\frac{110(50×20-10×30)^{2}}{60×50×80×30}$≈7.486>6.635,
∴有99%的把握认为该药有效.
点评 独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式计算出k值,然后代入离散系数表,比较即可得到答案.
练习册系列答案
相关题目
19.已知向量$\overrightarrow a=({-2,2})$,$\overrightarrow b=({5,m})$,且|$\overrightarrow a+\overrightarrow b|$不超过5,则函数f(x)=$\sqrt{3}$cosx-sinx+m有零点的概率是( )
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=19(a>0,b>0)的离心率为$\frac{\sqrt{5}}{2}$,则C的渐近线方程为( )
| A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{3}$x | C. | y=±x | D. | y=±$\frac{1}{2}$x |
16.在(0,2π)内,使得|sinx|>|cosx|成立的x的取值范围是( )
| A. | $(\frac{π}{4},\frac{π}{2})∪(π,\frac{5}{4}π)$ | B. | $(\frac{π}{4},π)$ | C. | $(\frac{π}{4},\frac{3}{4}π)∪(\frac{5π}{4},\frac{7}{4}π)$ | D. | $(\frac{π}{4},\frac{π}{2})∪(\frac{5}{4}π,\frac{3}{2}π)$ |
3.10颗骰子同时掷出,共掷5次,至少有一次全部出现一个点的概率是( )
| A. | ${[{1-{{({\frac{5}{6}})}^{10}}}]^5}$ | B. | ${[{1-{{({\frac{5}{6}})}^6}}]^{10}}$ | C. | 1 $-{[{1-{{({\frac{1}{6}})}^5}}]^{10}}$ | D. | 1$-{[{1-{{({\frac{1}{6}})}^{10}}}]^5}$ |
20.数列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…的一个通项公式是( )
| A. | -$\frac{1}{{2}^{n}}$$\frac{(-1)^{n}}{{2}^{n}}$ | B. | $\frac{(-1)^{n}}{{2}^{n}}$ | C. | $\frac{(-1)^{n+1}}{{2}^{n}}$ | D. | $\frac{(-1)^{n}}{{2}^{n-1}}$ |