题目内容
“a+b≠3”是“a≠1或b≠2”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分必要条件的定义可判断,运用特殊值可判断.
解答:
解:∵a+b≠3,
∴a≠1或b≠2成立.
∵如果取a=4,b=-1,则有a+b=3成立,
∴由a≠1或b≠2,而a+b≠3不一定成立,
∴根据充分必要条件的定义可判断:“a+b≠3”是“a≠1或b≠2”的充分不必要条件,
故选:A
∴a≠1或b≠2成立.
∵如果取a=4,b=-1,则有a+b=3成立,
∴由a≠1或b≠2,而a+b≠3不一定成立,
∴根据充分必要条件的定义可判断:“a+b≠3”是“a≠1或b≠2”的充分不必要条件,
故选:A
点评:本题考查了充分必要条件的定义,属于基础题,难度不大.
练习册系列答案
相关题目
已知两条直线l1:kx+(1-k)y-3=0和l2:(k-1)x+2y-2=0互相垂直,则k=( )
| A、1或-2 | B、-1或2 |
| C、1或2 | D、-1或-2 |