题目内容
下列各小题中,p是q的充要条件的是( )
(1)p:cosα=cosβ;q:sinα=sinβ;
(2)p:
=-1;q:y=f(x)是奇函数;
(3)p:A∪B=B;q:∁UB⊆∁UA;
(4)p:m<2或m>6;q:y=x2+mx+m+3有两个不同的零点.
(1)p:cosα=cosβ;q:sinα=sinβ;
(2)p:
| f(-x) |
| f(x) |
(3)p:A∪B=B;q:∁UB⊆∁UA;
(4)p:m<2或m>6;q:y=x2+mx+m+3有两个不同的零点.
| A、(1)(3) | B、(3)(4) |
| C、(3) | D、(4) |
考点:充要条件
专题:阅读型,简易逻辑
分析:可举反例,令α=30°,β=150°,即可判断(1);可举反例,比如f(x)=x,即可判断(2);运用结论A∪B=B?A⊆B,即可判断(3);由y=x2+mx+m+3有两个不同的零点,求出m的范围,再根据包含关系即可判断.
解答:
解:(1)令α=30°,β=150°,则sinα=sinβ,cosα≠cosβ,故(1)错;
(2)由y=f(x)是奇函数,且f(x)≠0,才有
=-1,比如f(x)=x,由q推不出p,故(2)错;
(3)A∪B=B?A⊆B?∁UB⊆∁UA,故(3)正确;
(4)由于函数y=x2+mx+m+3有两个不同的零点,则m2-4(m+3)>0,解得,m>6或m<-2,
由p推不出q,q可推出p,故(4)错.
故选:C.
(2)由y=f(x)是奇函数,且f(x)≠0,才有
| f(-x) |
| f(x) |
(3)A∪B=B?A⊆B?∁UB⊆∁UA,故(3)正确;
(4)由于函数y=x2+mx+m+3有两个不同的零点,则m2-4(m+3)>0,解得,m>6或m<-2,
由p推不出q,q可推出p,故(4)错.
故选:C.
点评:本题主要考查充要条件的判断,同时考查函数的奇偶性和函数的零点问题,以及集合的包含关系,三角函数相等的关系,属于基础题.
练习册系列答案
相关题目
直线x-y+1=0与圆x2+(y+1)2=2的位置关系是( )
| A、相离 | B、相切 |
| C、相交 | D、不能确定 |
复数z=3+4i,|z|为复数z的模,
为复数z的共轭复数,i是虚数单位,则下列结论正确的是( )
. |
| z |
| A、z2>0 | ||
B、z•
| ||
| C、|z|=25 | ||
D、
|
已知实数x,y满足
,则目标函数z=2x-y的最大值为( )
|
| A、0 | B、3 | C、4 | D、6 |
若A={x|x2-2x-3<0},B={x|
≥1},则A∩(∁RB)( )
| 1 |
| x |
| A、(-1,0) |
| B、(0,3) |
| C、(-1,0)∪[1,3) |
| D、(-1,0]∪(1,3) |
观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a8+b8=( )
| A、28 | B、47 | C、76 | D、123 |
已知向量
=(3,-2),
=(x,y-1)且
∥
,若x,y均为正数,则
+
的最小值是( )
| a |
| b |
| a |
| b |
| 3 |
| x |
| 2 |
| y |
A、
| ||
B、
| ||
| C、8 | ||
| D、24 |
若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则△ABC的面积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|