题目内容

观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a8+b8=(  )
A、28B、47C、76D、123
考点:归纳推理
专题:推理和证明
分析:根据给出的几个等式,不难发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和,再写出三个等式即得.
解答: 解:由于a+b=1,
a2+b2=3,
a3+b3=4,
a4+b4=7,
a5+b5=11,
…,
通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和.
因此,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,
故选B.
点评:本题考查归纳推理的思想方法,注意观察所给等式的左右两边的特点,这是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网