ÌâÄ¿ÄÚÈÝ
5£®Ï±íÊý¾ÝΪijµØÇøÄ³ÖÖÅ©²úÆ·µÄÄê²úÁ¿x£¨µ¥Î»£º¶Ö£©¼°¶ÔÓ¦ÏúÊÛ¼Û¸ñy£¨µ¥Î»£ºÇ§Ôª/¶Ö£©£®| x | 1 | 2 | 3 | 4 | 5 |
| y | 70 | 65 | 55 | 38 | 22 |
£¨2£©Èôÿ¶Ö¸ÃÅ©²úÆ·µÄ³É±¾Îª13.1ǧԪ£¬¼ÙÉè¸ÃÅ©²úÆ·¿ÉÈ«²¿Âô³ö£¬Ô¤²âµ±Äê²úÁ¿Îª¶àÉÙ¶Öʱ£¬ÄêÀûÈóZ×î´ó£¿
²Î¿¼¹«Ê½£º$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$£®
·ÖÎö £¨I£©¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬$\sum_{i=1}^{5}$xiyiºÍ$\sum_{i=1}^{5}$${{x}_{i}}^{2}$£¬Çó³ö»Ø¹éϵÊý$\widehat{b}$¡¢$\widehat{a}$£¬Ð´³ö»Ø¹é·½³Ì£»
£¨¢ò£©Ð´³öÄêÀûÈóº¯Êýz£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó³öZµÄ×î´óÖµ£®
½â´ð ½â£º£¨I£©¼ÆËã$\overline{x}$=$\frac{1}{5}$¡Á£¨1+2+3+4+5£©=3£¬
$\overline{y}$=$\frac{1}{5}$¡Á£¨70+65+55+38+22£©=50£¬
$\sum_{i=1}^{5}$xiyi=1¡Á70+2¡Á65+3¡Á55+4¡Á38+3¡Á22=627£¬
$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=12+22+32+42+52=55£»
¡à»Ø¹éϵÊý$\widehat{b}$=$\frac{627-5¡Á3¡Á5}{55-5{¡Á3}^{2}}$¡Ö-12.3£¬
$\widehat{a}$=50-£¨-12.3£©¡Á3=86.9£»
¡ày¹ØÓÚxµÄÏßÐԻع鷽³ÌΪ$\widehat{y}$=-12.3x+86.9£»
£¨¢ò£©ÄêÀûÈóz=x£¨86.9-12.3x£©-13.1x
=-12.3x2+73.8x£»
¡àµ±x=-$\frac{73.8}{2¡Á£¨-12.3£©}$=3ʱ£¬ÄêÀûÈóZ×î´ó£®
µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˶þ´Îº¯ÊýµÄÐÔÖÊÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮
| A£® | $-\frac{1}{5}$ | B£® | $\frac{1}{5}$ | C£® | $-\frac{{2\sqrt{2}}}{5}$ | D£® | $\frac{{2\sqrt{2}}}{5}$ |
| A£® | m¡Ù5 | B£® | m¡Ù3 | C£® | m¡Ù-2 | D£® | m¡Ù-3 |
| A£® | -i | B£® | -2i | C£® | -1 | D£® | -2 |
| A£® | B£® | C£® | D£® |
| A£® | b£¼c£¼a | B£® | c£¼a£¼b | C£® | b£¼a£¼c | D£® | c£¼b£¼a |
| A£® | $\frac{2}{3}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{3}$ |