题目内容
18.已知$a={2^{2.1}},b={(\frac{1}{2})^{-\frac{1}{2}}},c={log_5}$4,则a,b,c的大小关系为( )| A. | b<c<a | B. | c<a<b | C. | b<a<c | D. | c<b<a |
分析 利用指数函数与对数函数的单调性即可得出.
解答 解:∵a>22=4,$b={2}^{-1×(-\frac{1}{2})}$=$\sqrt{2}$∈(1,2),c<1.
∴a>b>c.
故选:D.
点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
4.已知复数z=$\frac{1-2i}{2+i}$,其中i为虚数单位,则复数z的虚部为( )
| A. | -1 | B. | 1 | C. | -i | D. | i |
5.下表数据为某地区某种农产品的年产量x(单位:吨)及对应销售价格y(单位:千元/吨).
(1)若y与x有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 70 | 65 | 55 | 38 | 22 |
(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.
10.已知x为实数,则“$\frac{1}{x}<1$”是“x>1”的( )
| A. | 充分非必要条件 | B. | 充要条件 | ||
| C. | 必要非充分条件 | D. | 既不充分也不必要条件 |