题目内容
20.复数$\frac{1-i}{1+i}$(i是虚数单位)的虚部为( )| A. | -i | B. | -2i | C. | -1 | D. | -2 |
分析 直接利用复数代数形式的乘除运算化简复数$\frac{1-i}{1+i}$得答案.
解答 解:由$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
得复数$\frac{1-i}{1+i}$的虚部为:-1.
故选:C.
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
15.由0,1,2,3,5组成的无重复数字的五位偶数共有( )
| A. | 36个 | B. | 42个 | C. | 48个 | D. | 120个 |
5.下表数据为某地区某种农产品的年产量x(单位:吨)及对应销售价格y(单位:千元/吨).
(1)若y与x有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 70 | 65 | 55 | 38 | 22 |
(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.