题目内容

设P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1、F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则椭圆的离心率为(  )
A、
2
2
B、
3
2
C、
2
3
D、
6
3
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:依题意,△PF1F2为直角三角形,设|PF1|=m,|PF2|=n,可求得m,n与c的关系,从而可求椭圆的离心率.
解答: 解:∵∠PF1F2=15°,∠PF2F1=75°,
∴,△PF1F2为直角三角形,∠F1PF2=90°,
设|PF1|=m,|PF2|=n,|F1F2|=2c,
则n=2csin75°,m=2csin15°,
又|PF1|+|PF2|=m+n=2a
∴2csin15°+2csin75°=2a,
∴e=
c
a
=
1
sin15°+sin75°
=
6
3

故选:D.
点评:本题考查椭圆的简单性质,求得|PF1|、|PF2|与|F1F2|之间的关系是关键,考查分析与运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网