题目内容

已知(2x+1)n=a0+a1x+a2x2+…+anxn中令x=0,就可以求出常数项,即1=a0.请你根据其中蕴含的解题方法研究下列问题;若ex=a0+a1x+a2x2+a3x3+a4x4+…+anxn+…,且n≥2,n∈N,则a1+
a2
a0
+
a3
a1
+…+
an
an-2
=
 
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:通过对ex=a0+a1x+a2x2+a3x3+a4x4+…anxn+…,连续求导,赋值求出a0,a1,a2,a3,a4,猜想an,然后求解a1+
a2
a0
+
a3
a1
+…+
an
an-2
的值.
解答: 解:∵ex=a0+a1x+a2x2+a3x3+a4x4+…+anxn+…,
∴(ex)′=a1+2a2x+3a3x2+4a4x3+…+nanxn-1+…,
令x=0,可得a1=1,
同理,a2=
1
2!

猜想an=
1
n!

∴a1+
a2
a0
+
a3
a1
+…+
an
an-2
=1+
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=2-
1
n

故答案为:2-
1
n
点评:本题考查数列与函数的综合应用,函数的导数以及二项式定理的应用,考查转化思想以及计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网