ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¨n¡ÊN*£©£¬¹ØÓÚÊýÁÐ{an}ÓÐÏÂÁÐÃüÌ⣺
¢ÙÈô{an}¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁУ¬ÔòSn=nan£¨n¡ÊN*£©£»
¢ÚÈôSn=an2+bn£¨a£¬b¡ÊR£©£¬Ôò{an}ÊǵȲîÊýÁУ»
¢ÛÈôSn=3n+1£¬Ôò{an}ÊǵȱÈÊýÁУ»
¢ÜÈô{an}ÊǵȱÈÊýÁУ¬ÔòSm£¬S2m-Sm£¬S3m-S2m£¨m¡ÊN*£©Ò²³ÉµÈ±ÈÊýÁУ»
¢ÝÈô{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÇÒSm£¬2Sm+1£¬3Sm+2£¨m¡ÊN*£©³ÉµÈ²îÊýÁУ¬Ôò3q-1=0£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ £®£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
¢ÙÈô{an}¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁУ¬ÔòSn=nan£¨n¡ÊN*£©£»
¢ÚÈôSn=an2+bn£¨a£¬b¡ÊR£©£¬Ôò{an}ÊǵȲîÊýÁУ»
¢ÛÈôSn=3n+1£¬Ôò{an}ÊǵȱÈÊýÁУ»
¢ÜÈô{an}ÊǵȱÈÊýÁУ¬ÔòSm£¬S2m-Sm£¬S3m-S2m£¨m¡ÊN*£©Ò²³ÉµÈ±ÈÊýÁУ»
¢ÝÈô{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÇÒSm£¬2Sm+1£¬3Sm+2£¨m¡ÊN*£©³ÉµÈ²îÊýÁУ¬Ôò3q-1=0£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼
·ÖÎö£ºÓɼÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁеÄÊýÁÐΪ·ÇÁã³£ÊýÁÐ˵Ã÷¢ÙÕýÈ·£»ÓÉÊýÁеÄǰnÏîºÍÇó³öͨÏʽ˵Ã÷¢ÚÕýÈ·£¬¢Û´íÎó£»¾Ù·´Àý˵Ã÷¢Ü´íÎó£»Ö±½ÓÓɵȱÈÊýÁеÄǰnÏîºÍ½áºÏµÈ²îÊýÁеÄÐÔÖÊÁÐʽ·ÖÎö¢ÝÕýÈ·£®
½â´ð£º
½â£º¢ÙÈô{an}¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁУ¬ÔòÊýÁÐΪ·ÇÁã³£ÊýÁУ¬¡àSn=nan£¨n¡ÊN*£©£¬ÃüÌâ¢ÙÕýÈ·£»
¢ÚÈôSn=an2+bn£¨a£¬b¡ÊR£©£¬Ôòa1=S1=a+b£¬
an=Sn-Sn-1=an2+bn-[a£¨n-1£©2+b£¨n-1£©]=2an-a+b£¨n¡Ý2£©£®
ÑéÖ¤n=1ÉÏʽ³ÉÁ¢£¬¡àan=2an-a+b£¬Ôò{an}ÊǵȲîÊýÁУ¬ÃüÌâ¢ÚÕýÈ·£»
¢ÛÈôSn=3n+1£¬Ôòa1=S1=4£¬
an=Sn-Sn-1=3n+1-3n-1-1=2•3n-1£¨n¡Ý2£©£¬
ÑéÖ¤n=1ʱÉÏʽ²»³ÉÁ¢£¬Ôò{an}²»ÊǵȱÈÊýÁУ¬ÃüÌâ¢Û´íÎó£»
¢ÜÈô{an}ÊǵȱÈÊýÁУ¬ÔòSm£¬S2m-Sm£¬S3m-S2m£¨m¡ÊN*£©²»Ò»¶¨³ÉµÈ±ÈÊýÁУ¬ÈçÊýÁÐ1£¬-1£¬1£¬-1£¬1£¬-1£¬1£¬-1£¬¡£¬m=2ʱ²»³ÉÁ¢£¬ÃüÌâ¢Ü´íÎó£»
¢ÝÈô{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÇÒSm£¬2Sm+1£¬3Sm+2£¨m¡ÊN*£©³ÉµÈ²îÊýÁУ¬
ÉèÆäÊ×ÏîΪa1£¬¹«±ÈΪq£¬Ôò2
=
+3
£¬ÕûÀíµÃ3q-1=0£¬ÃüÌâ¢ÝÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ý£®
¢ÚÈôSn=an2+bn£¨a£¬b¡ÊR£©£¬Ôòa1=S1=a+b£¬
an=Sn-Sn-1=an2+bn-[a£¨n-1£©2+b£¨n-1£©]=2an-a+b£¨n¡Ý2£©£®
ÑéÖ¤n=1ÉÏʽ³ÉÁ¢£¬¡àan=2an-a+b£¬Ôò{an}ÊǵȲîÊýÁУ¬ÃüÌâ¢ÚÕýÈ·£»
¢ÛÈôSn=3n+1£¬Ôòa1=S1=4£¬
an=Sn-Sn-1=3n+1-3n-1-1=2•3n-1£¨n¡Ý2£©£¬
ÑéÖ¤n=1ʱÉÏʽ²»³ÉÁ¢£¬Ôò{an}²»ÊǵȱÈÊýÁУ¬ÃüÌâ¢Û´íÎó£»
¢ÜÈô{an}ÊǵȱÈÊýÁУ¬ÔòSm£¬S2m-Sm£¬S3m-S2m£¨m¡ÊN*£©²»Ò»¶¨³ÉµÈ±ÈÊýÁУ¬ÈçÊýÁÐ1£¬-1£¬1£¬-1£¬1£¬-1£¬1£¬-1£¬¡£¬m=2ʱ²»³ÉÁ¢£¬ÃüÌâ¢Ü´íÎó£»
¢ÝÈô{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÇÒSm£¬2Sm+1£¬3Sm+2£¨m¡ÊN*£©³ÉµÈ²îÊýÁУ¬
ÉèÆäÊ×ÏîΪa1£¬¹«±ÈΪq£¬Ôò2
| a1(1-qm+1) |
| 1-q |
| a1(1-qm) |
| 1-q |
| a1(1-qm+2) |
| 1-q |
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ý£®
µãÆÀ£º±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËÓÉÊýÁеÄǰnÏîºÍÇóÊýÁеÄͨÏʽ£¬¿¼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄÐÔÖÊ£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×Ïîa1¡Ù0£¬Ç°nÏîºÍÊÇSn£¬Ôò
µÈÓÚ£¨¡¡¡¡£©
| S5n |
| S3n-S2n |
| A¡¢2 | B¡¢4 | C¡¢5 | D¡¢9 |
¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©ÔÚ[-1£¬0]Éϵ¥µ÷µÝ¼õ£¬ÔòÏÂÁйØÏµÊ½ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢0£¼f£¨1£©£¼f£¨-1£© |
| B¡¢f£¨-1£©£¼f£¨1£©£¼0 |
| C¡¢f£¨1£©£¼0£¼f£¨-1£© |
| D¡¢f£¨-1£©£¼0£¼f£¨1£© |
£¨ÎÄ×ö£©º¯Êýf£¨x£©=£¨x-1£©£¨x-2£©+£¨x-2£©£¨x-3£©+£¨x-3£©£¨x-1£©µÄÁ½¸öÁãµã·Ö±ðλÓÚÇø¼ä£¨¡¡¡¡£©
| A¡¢£¨2£¬3£©ºÍ£¨3£¬+¡Þ£©ÄÚ |
| B¡¢£¨-¡Þ£¬1£©ºÍ£¨1£¬2£©ÄÚ |
| C¡¢£¨1£¬2£©ºÍ£¨2£¬3£©ÄÚ |
| D¡¢£¨-¡Þ£¬1£©ºÍ£¨3£¬+¡Þ£©ÄÚ |
ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖª£¨a8-1£©3+2015£¨a8-1£©=1£¬£¨a2008-1£©3+2015£¨a2008-1£©=-1£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢S2015=2015£¬a2008£¼a8 |
| B¡¢S2015=2015£¬a2008£¾a8 |
| C¡¢S2015=-2015£¬a2008¡Üa8 |
| D¡¢S2015=-2015£¬a2008¡Ýa8 |
ÒÑÖª¡÷ABCµÄÈý±ßΪa£¬b£¬c£¬ÈôC=
£¬Ôò
µÄ×î´óֵΪ£¨¡¡¡¡£©
| ¦Ð |
| 2 |
| a+b |
| c |
A¡¢
| ||||
| B¡¢1 | ||||
C¡¢
| ||||
D¡¢2
|