题目内容
18.设直线l:3x+4y+a=0,圆C:(x-2)2+y2=22,若在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,则a的取值范围是[-16,4].分析 由切线的对称性和圆的知识将问题转化为C(2,0)到直线l的距离小于或等于2,再由点到直线的距离公式得到关于a的不等式求解.
解答 解:圆C:(x-2)2+y2=22,圆心为:(2,0),半径为2,
∵在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,
∴在直线l上存在一点M,使得M到C(2,0)的距离等于2,
∴只需C(2,0)到直线l的距离小于或等于2,
故$\frac{|6+a|}{\sqrt{{3}^{2}+{4}^{2}}}$≤2,解得-16≤a≤4.
故答案为:[-16,4];
点评 本题考查直线和圆的位置关系,由题意得到圆心到直线的距离小于或等于2是解决问题的关键,属中档题.
练习册系列答案
相关题目