题目内容

6.已知动点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线中点的轨迹方程是(  )
A.y=2x2B.y=8x2C.$y=4{x^2}+\frac{1}{2}$D.$y=4{x^2}-\frac{1}{2}$

分析 先设AP中点为(x,y),进而根据中点的定义可求出P点的坐标,然后代入到曲线方程中得到轨迹方程.

解答 解:设AP中点为(x,y),则P(2x,2y+1)在2x2-y=0上,即2(2x)2-(2y+1)=0,
∴2y=8x2-1,即y=4x2-$\frac{1}{2}$.
故选D.

点评 本题主要考查轨迹方程的求法,正确运用代入法是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网