题目内容

13.在△ABC中,内角A,B,C的对边分别是a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求角B的值;
(2)若a+c=6,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求边b的长.

分析 (1)利用已知条件通过正弦定理以及两角和的正弦函数求解得到sinC,然后求解B的正确函数值.
(2)利用三角形的面积求出ab的值,然后通过余弦定理,转化求解.

解答 解:(1)由$a=bcosC+\frac{{\sqrt{3}}}{3}$csinB及正弦定理得:$sinA=sinBcosC+\frac{{\sqrt{3}}}{3}sinCsinB$.…(1分)
∴$sin({B+C})=sinBcosC+\frac{{\sqrt{3}}}{3}sinCsinB$.…(2分)
∴$sinBcosC+cosBsinC=sinBcosC+\frac{{\sqrt{3}}}{3}sinCsinB$.…(3分)
∴$cosBsinC=\frac{{\sqrt{3}}}{3}sinCsinB$…(4分)
又∵C为三角形内角,可得sinC≠0,
∴$tanB=\sqrt{3}$.…(5分)
∵B∈(0,π),
∴$B=\frac{π}{3}$.…(6分)
(2)∵△ABC面积为$\frac{{3\sqrt{3}}}{2}$,∴$\frac{1}{2}acsinB=\frac{{3\sqrt{3}}}{2}$,即$\frac{1}{2}ac•\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$,ac=6.…(9分)
由余弦定理得,b2=a2+c2-2accosB=(a+c)2-3ac=36-18=18,
∴$b=3\sqrt{2}$.…(12分)

点评 本题考查正弦定理以及余弦定理的应用,考查三角形的面积以及三角形的解法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网