题目内容
5.若函数f(x)=x2ex-a恰有三个零点,则实数a的取值范围是( )| A. | $({\frac{4}{e^2},+∞})$ | B. | $({0,\frac{4}{e^2}})$ | C. | (0,4e2) | D. | (0,+∞) |
分析 求导函数,求出函数的极值,利用函数f(x)=x2ex-a恰有三个零点,即可求实数a的取值范围.
解答 解:函数y=x2ex的导数为y′=2xex+x2ex =xex (x+2),
令y′=0,则x=0或-2,
-2<x<0上单调递减,(-∞,-2),(0,+∞)上单调递增,
∴0或-2是函数y的极值点,函数的极值为:f(0)=0,f(-2)=4e-2=$\frac{4}{{e}^{2}}$.
函数f(x)=x2ex-a恰有三个零点,则实数a的取值范围是:$({0,\frac{4}{e^2}})$.
故选:B.
点评 本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
16.已知函数f(x)=-x5-3x3-5x+3,若f(a)+f(a-2)>6,则实数a的取值范围是( )
| A. | (-∞,3) | B. | (3,+∞) | C. | (1,+∞) | D. | (-∞,1) |
20.已知点(x,y)满足不等式组$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$,则z=x+y的最小值为( )
| A. | 3 | B. | 11 | C. | $\frac{17}{7}$ | D. | $\frac{15}{7}$ |
10.命题“?x∈R,使得x2+x+1>0”的否定是( )
| A. | ?x0∈R,使得x02+x0+1>0 | B. | ?x∈R,使得x2+x+1>0 | ||
| C. | ?x∈R,使得x2+x+1≤0 | D. | ?x0∈R,使得x02+x0+1≤0 |
17.
甘班全体同学某次考试数学成绩(满分:100分)的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),则图中x的值等于( )
| A. | 0.012 | B. | 0.018 | C. | 0.12 | D. | 0.18 |
14.如果方程$\frac{x^2}{m^2}+\frac{y^2}{m+2}=1$表示焦点在x轴上的椭圆,则实数m的取值范围是( )
| A. | (2,+∞) | B. | (-∞,-1) | C. | (-∞,-1)∪(2,∞) | D. | (-2,-1)∪(2,+∞) |
15.若cos(π-α)=-$\frac{\sqrt{3}}{3}$,则cosα=( )
| A. | -$\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |