题目内容

19.在△ABC中,角A、B、C所对的边分别是a、b、c,已知$\sqrt{3}a=2csinA$且c<b. 
(Ⅰ)求角C的大小;
(Ⅱ)若b=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

分析 (Ⅰ)由正弦定理化$\sqrt{3}a=2csinA$,即可求出sinC的值,从而求出C;
(Ⅱ)根据图形设BC=x,利用余弦定理求出x的值,再求出AB的值,
利用正弦定理求出sinA,再计算△ACD的面积.

解答 解:(Ⅰ)△ABC中,$\sqrt{3}a=2csinA$,
由正弦定理得,$\sqrt{3}sinA=2sinCsinA$,
∴$sinC=\frac{{\sqrt{3}}}{2}$,
又c<b,∴$C=\frac{π}{3}$; …(6分)
(Ⅱ)如图所示,
设BC=x,则AB=5-x,
在△ABC中,由余弦定理得
$(5-x{)^2}={x^2}+{4^2}-2•x•4cos\frac{π}{3}$,
求得$x=\frac{3}{2}$,即$BC=\frac{3}{2}$,
所以$AB=\frac{7}{2}$,…(8分)
在△ABC中,由正弦定理得$\frac{BC}{sinA}=\frac{AB}{sinC}$,
∴$sinA=\frac{BCsinC}{AB}=\frac{{3\sqrt{3}}}{14}$,…(10分)
∴△ACD的面积为
$S=\frac{1}{2}AC•AD•sinA$=$\frac{1}{2}×4×5×\frac{{3\sqrt{3}}}{14}=\frac{{15\sqrt{3}}}{7}$.…(12分)

点评 本题考查了正弦、余弦定理的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网