题目内容

12.已知函数f(x)=$\frac{1}{3}{x^3}-{x^2}$+ax在x=-1是取得极值.
(1)求实数a的值;
(2)求函数y=f(x)在区间[-2,0)上的最大值和最小值.

分析 (1)求出函数的导数,根据f′(-1)=0,求出a的值即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.

解答 解:(1)f′(x)=x2-2x+a,
由函数在x=-1处取极值,故f′(-1)=0,
即1+2+a=0,解得:a=-3;
(2)由(1)得:f(x)=$\frac{1}{3}$x3-x2-3x,
故f′(x)=x2-2x-3=(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
故f(x)在[-2,-1)递增,在(-1,0)递减,
由f(-2)=-$\frac{2}{3}$,f(-1)=$\frac{5}{3}$,
故f(x)max=f(-1)=$\frac{5}{3}$,
f(x)min=f(-2)=-$\frac{2}{3}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及极值的意义,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网