题目内容

3.已知等差数列{an}的前n项和为Sn,且a10=21,S10=120.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+1,求数列{bn}的前n项和Tn

分析 (I)设等差数列{an}的公差为d,由a10=21,S10=120.可得a1+9d=21,10a1+$\frac{10×9}{2}$d=120,解得a1,d.即可得出.
(II)bn=$\frac{1}{(2n+1)(2n+3)}$+1=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$+1,利用“裂项求和”方法即可得出.

解答 解:(I)设等差数列{an}的公差为d,∵a10=21,S10=120.∴a1+9d=21,10a1+$\frac{10×9}{2}$d=120,
解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
(II)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+1=$\frac{1}{(2n+1)(2n+3)}$+1=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$+1,
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$+n
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$+n
=$\frac{n}{6n+9}$+n.

点评 本题考查了等差数列的通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网