题目内容
7.下列事件:①抛一枚硬币,出现正面朝上;②某人买彩票中奖;③大年初一太原下雪;④标准大气压下,水加热到90°C时会沸腾.其中随机事件的个数是( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 依据随机事件定义,即随机事件就是可能发生也可能不发生的事件,即可判断出事件中是随机事件的个数.
解答 解:依据随机事件定义,可知①②③是随机事件,
故选C.
点评 解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
练习册系列答案
相关题目
17.已知定义在R上的函数f(x)满足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函数y=f(x)-$\frac{t}{3}$x(t>0)至少有9个零点,则t的取值范围为( )
| A. | (0,$\frac{1}{3}$) | B. | (0,54-24$\sqrt{5}$] | C. | (0,$\frac{1}{2}$) | D. | (0,$\frac{1}{3}$] |
15.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,则双曲线的离心率为( )
| A. | 4 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{5}{3}$ |
19.设a=log37,b=21.1,c=0.52.1,则( )
| A. | b<a<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
16.命题:“存在一个椭圆,其离心率e<1”的否定是( )
| A. | 任意椭圆的离心率e≥1 | B. | 存在一个椭圆,其离心率e≥1 | ||
| C. | 任意椭圆的离心率e>1 | D. | 存在一个椭圆,其离心率e>1 |