ÌâÄ¿ÄÚÈÝ
12£®ÎªÁ˵õ½º¯Êýy=3sin$\frac{x}{3}$µÄͼÏó£¬Ö»Ðè°Ñº¯Êýy=sinxͼÏóÉÏËùÓеĵãµÄ£¨¡¡¡¡£©| A£® | ºá×ø±êÉ쳤µ½ÔÀ´µÄ3±¶£¬×Ý×ø±ê±äΪÔÀ´µÄ3±¶ | |
| B£® | ºá×ø±êËõСµ½ÔÀ´µÄ$\frac{1}{3}$±¶£¬×Ý×ø±ê±äΪÔÀ´µÄ$\frac{1}{3}$±¶ | |
| C£® | ºá×ø±êÉ쳤µ½ÔÀ´µÄ$\frac{1}{3}$±¶£¬×Ý×ø±ê±äΪÔÀ´µÄ3±¶ | |
| D£® | ºá×ø±êÉ쳤µ½ÔÀ´µÄ3±¶£¬×Ý×ø±ê±äΪÔÀ´µÄ$\frac{1}{3}$±¶ |
·ÖÎö ÓÉÌõ¼þÀûÓÃy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬µÃ³ö½áÂÛ£®
½â´ð ½â£º°Ñº¯Êýy=sinxͼÏóÉÏËùÓеĵãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ3±¶£¬¿ÉµÃy=sin$\frac{1}{3}$xµÄͼÏó£»
ÔÙ°Ñ×Ý×ø±ê±äΪÔÀ´µÄ3±¶£¬¿ÉµÃº¯Êýy=3sin$\frac{x}{3}$µÄͼÏó£¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÒÑÖªÒ»×éÊý¾Ý°´´ÓСµ½´óµÄ˳ÐòÅÅÁÐΪ£º14£¬19£¬x£¬23£¬27£¬ÆäÖÐÖÐλÊýÊÇ22£¬ÔòxµÄֵΪ£¨¡¡¡¡£©
| A£® | 24 | B£® | 23 | C£® | 22 | D£® | 21 |
12£®ÒÑÖªº¯Êýy=f£¨x£©ÔÚx=x0´¦¿Éµ¼£¬Ôò$\underset{lim}{h¡ú¡Þ}\frac{f£¨{x}_{0}+h£©-f£¨{x}_{0}-h£©}{h}$µÈÓÚ£¨¡¡¡¡£©
| A£® | f¡ä£¨x0£© | B£® | 2f¡ä£¨x0£© | C£® | -2f¡ä£¨x0£© | D£® | 0 |
7£®ÒÑÖª¼¯ºÏA={x|2x2-7x¡Ý0}£¬B={x|x£¾3}£¬Ôò¼¯ºÏA¡ÉB=£¨¡¡¡¡£©
| A£® | £¨3£¬+¡Þ£© | B£® | [$\frac{7}{2}$£¬+¡Þ£© | C£® | £¨-¡Þ£¬0}]¡È[$\frac{7}{2}$£¬+¡Þ£© | D£® | £¨-¡Þ£¬0]¡È£¨3£¬+¡Þ£© |
17£®Å×ÎïÏßy2=mxµÄ½¹µãΪ£¨-1£¬0£©£¬Ôòm=£¨¡¡¡¡£©
| A£® | -4 | B£® | 4 | C£® | -2 | D£® | 2 |