题目内容

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,则z=(a2+1)x-3(a2+1)y的最小值是-20,则实数a=±2.

分析 画出满足条件的平面区域,求出角点的坐标,结合图象求出a的值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-2y+2=0}\end{array}\right.$,解得:A(2,2),
由z=(a2+1)x-3(a2+1)y,
得:y=$\frac{1}{3}$x-$\frac{z}{3{(a}^{2}+1)}$,
显然直线过A(2,2)时,z最小,
故2(a2+1)-6(a2+1)=-20,
解得:a=±2,
故答案为:±2.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网