题目内容

11.如图,在平行四边形ABCD中,已知$\overrightarrow{|AB|}$=8,$\overrightarrow{|AD|}$=5,$\overrightarrow{CP}=3\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}=2$,则$\overrightarrow{AB}•\overrightarrow{AD}$=22.

分析 由条件便可得出$\overrightarrow{DP}=\frac{1}{4}\overrightarrow{AB}$,$\overrightarrow{CP}=-\frac{3}{4}\overrightarrow{AB}$,这样根据向量加法的几何意义便可得出$\overrightarrow{AP}=\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB},\overrightarrow{BP}=\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB}$,且$|\overrightarrow{AB}|=8,|\overrightarrow{AD}|=5,\overrightarrow{AP}•\overrightarrow{BP}=2$,从而进行向量数量积的运算便可得出$(\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB})•(\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB})$=$25-12-\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}=2$,从而便可求出$\overrightarrow{AB}•\overrightarrow{AD}$的值.

解答 解:根据条件,
$\overrightarrow{AP}=\overrightarrow{AD}+\overrightarrow{DP}$
=$\overrightarrow{AD}+\frac{1}{4}\overrightarrow{DC}$
=$\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}$;
$\overrightarrow{BP}=\overrightarrow{BC}+\overrightarrow{CP}$
=$\overrightarrow{AD}+\frac{3}{4}\overrightarrow{CD}$
=$\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB}$;
∴$\overrightarrow{AP}•\overrightarrow{BP}=(\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB})•(\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AB})$
=${\overrightarrow{AD}}^{2}-\frac{3}{16}{\overrightarrow{AB}}^{2}-\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}$
=$25-12-\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}$
=2;
∴$\overrightarrow{AB}•\overrightarrow{AD}=22$.
故答案为:22.

点评 考查向量数乘的几何意义,相等向量的概念,以及向量加法的几何意义,向量数量积的运算及计算公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网