题目内容
过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为原点,则△OAB的外接圆方程是( )
| A、(x-2)2+(y-1)2=5 |
| B、(x-4)2+(y-2)2=20 |
| C、(x+2)2+(y+1)2=5 |
| D、(x+4)2+(y+2)2=20 |
考点:直线与圆的位置关系
专题:直线与圆
分析:由题意知OA⊥PA,BO⊥PB,四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,△AOB外接圆就是四边形AOBP的外接圆.
解答:
解:由题意知,OA⊥PA,BO⊥PB,
∴四边形AOBP有一组对角都等于90°,
∴四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,
∵OP的中点为(2,1),OP=2
,
∴四边形AOBP的外接圆的方程为 (x-2)2+(y-1)2=5,
∴△AOB外接圆的方程为 (x-2)2+(y-1)2=5.
故选:A
∴四边形AOBP有一组对角都等于90°,
∴四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,
∵OP的中点为(2,1),OP=2
| 5 |
∴四边形AOBP的外接圆的方程为 (x-2)2+(y-1)2=5,
∴△AOB外接圆的方程为 (x-2)2+(y-1)2=5.
故选:A
点评:本题考查圆的标准方程的求法,把求△AOB外接圆方程转化为求四边形AOBP的外接圆方程,体现了转化的数学思想.
练习册系列答案
相关题目
已知p:x>4,q:x>5,则p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知函数f(x)=ax+x-b零点x0∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是( )
| A、-1 | B、-2 | C、0 | D、1 |
| π |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、1 |
已知函数f(x+1)=x2+2x-1,x∈[1,2],则f(x)是( )
| A、[1,2]上的增函数 |
| B、[1,2]上的减函数 |
| C、[2,3]上的增函数 |
| D、[2,3]上的减函数 |