题目内容

4.如图,平行四边形ABCD中,AB=2AD=2,∠BAD=60°,E为DC的中点,那么$\overrightarrow{AC}$与$\overrightarrow{EB}$所成角的余弦值为(  )
A.$\frac{\sqrt{7}}{7}$B.-$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{14}$D.-$\frac{\sqrt{7}}{14}$

分析 建立平面直角坐标系,写出向量的坐标,代入夹角公式计算.

解答 解:以AB所在直线为x轴,A为原点,建立平面直角坐标系,如图,则A(0,0),B(2,0),C($\frac{5}{2}$,$\frac{\sqrt{3}}{2}$),D($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),E($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{AC}$=($\frac{5}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{EB}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),∴|$\overrightarrow{AC}$|=$\sqrt{(\frac{5}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{7}$,|$\overrightarrow{EB}$|=$\sqrt{({\frac{1}{2})}^{2}+({-\frac{\sqrt{3}}{2})}^{2}}$=1.$\overrightarrow{AC}•\overrightarrow{EB}$=$\frac{5}{4}-\frac{3}{4}$=$\frac{1}{2}$.
∴cos<$\overrightarrow{AC},\overrightarrow{EB}$>=$\frac{\frac{1}{2}}{\sqrt{7}}$=$\frac{\sqrt{7}}{14}$.
故选:C.

点评 本题考查了平面向量的数量积运算在集合中的应用,建立平面直角坐标系是快捷解题方法之一.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网