题目内容

19.若sinα=$-\frac{1}{2}$,α∈(-$\frac{π}{2}$,0),则tanα等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

分析 由题意和同角三角函数基本关系可得cosα,再由同角三角函数基本关系可得.

解答 解:∵sinα=$-\frac{1}{2}$,α∈(-$\frac{π}{2}$,0),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{3}}{2}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{\sqrt{3}}{3}$,
故选:D.

点评 本题考查同角三角函数基本关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网