题目内容

1.已知变量x,y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则2x+y的最大值为(  )
A.$\frac{1}{3}$B.10C.3D.$\frac{4}{3}$

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
设z=2x+y得y=-2x+z
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y-2=0}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$,即B(4,2),
代入目标函数z=2x+y得z=2×4+2=10.
即目标函数z=2x+y的最大值为10.
故选:B.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网