题目内容

9.设公差不为零的等差数列{an}的前5项的和为55,且a2,$\sqrt{{a_6}+{a_7}},{a_4}$-9成等比数列.
(1)求数列{an}的通项公式.
(2)设数列bn=$\frac{1}{{({a_n}-6)({a_n}-4)}}$,求证:数列{bn}的前n项和Sn<$\frac{1}{2}$.

分析 (1)设等差数列的首项为a1,公差为d,运用等比数列的中项的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;
(2)求得bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和和不等式的性质,即可得证.

解答 解:(1)设等差数列的首项为a1,公差为d,
由题意可得$\left\{\begin{array}{l}{{S}_{5}=55}\\{{a}_{6}+{a}_{7}={a}_{2}({a}_{4}-9)}\end{array}\right.$,
即有$\left\{\begin{array}{l}5{a_1}+\frac{5×4}{2}d=55\\{(\sqrt{{a_1}+5d+{a_1}+6d})^2}=({a_1}+d)({a_1}+3d-9)\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=7\\ d=2\end{array}\right.$或$\left\{\begin{array}{l}{a_1}=11\\ d=0\end{array}\right.$(舍去),
故数列{an}的通项公式为an=7+2(n-1)即an=2n+5;
(2)证明:由(1)an=2n+5,
得${b_n}=\frac{1}{{({a_n}-6)({a_n}-4)}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
则${S_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})<\frac{1}{2}$.
故原不等式成立.

点评 本题考查等差数列的通项公式和求和公式的运用,同时考查等比数列的中项的性质,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网