题目内容

19.在等比数列{an}中,已知a1+a3=2.5,a4+a6=20,求该数列的前10项和.

分析 利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:设等比数列{an}的公比为q,∵a1+a3=2.5,a4+a6=20,
∴q3(a1+a3)=2.5q3=20,解得q=2.
∴${a}_{1}(1+{q}^{2})$=2.5,解得a1=$\frac{1}{2}$.
∴该数列的前10项和=$\frac{\frac{1}{2}({2}^{10}-1)}{2-1}$=$\frac{1023}{2}$.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网