题目内容

已知数列{an}的前n项和为Sn,a1=
1
2
,Sn=n2an-n(n-1),n=1,2,…
(1)证明:数列{
n+1
n
Sn}是等差数列,并求Sn
(2)设bn=
Sn
n3+3n2
,求证:b1+b2+…+bn
5
12
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件得Sn=n2(Sn-Sn-1)-n(n-1),从而
n2-1
n(n-1)
Sn
=
n2
n(n-1)
Sn-1
+1,由此能证明数列{
n+1
n
Sn}是首项为1,公差为1的等差数列,从而得到Sn=n×
n
n+1
=
n2
n+1

(2)由bn=
Sn
n3+3n2
=
n2
n+1
×
1
n2(n+3)
=
1
(n+1)(n+3)
=
1
2
(
1
n+1
-
1
n+3
)
,利用裂项求和法能证明b1+b2+…+bn
5
12
解答: (1)证明:∵数列{an}的前n项和为Sn,a1=
1
2
,Sn=n2an-n(n-1),
∴n≥2时,有an=Sn-Sn-1
∴Sn=n2(Sn-Sn-1)-n(n-1),
∴(n2-1)Sn=n2Sn-1+n(n-1),
n2-1
n(n-1)
Sn
=
n2
n(n-1)
Sn-1
+1,
n+1
n
Sn
=
n
n-1
Sn-1
+1,
2
1
S1
=
2
1
a1
=1,
∴数列{
n+1
n
Sn}是首项为1,公差为1的等差数列,
n+1
n
Sn
=1+(n-1)×1=n,
∴Sn=n×
n
n+1
=
n2
n+1

(2)bn=
Sn
n3+3n2
=
n2
n+1
×
1
n2(n+3)
=
1
(n+1)(n+3)
=
1
2
(
1
n+1
-
1
n+3
)

∴b1+b2+…+bn=
1
2
1
2
-
1
4
+
1
3
-
1
5
+
1
4
-
1
6
+…+
1
n+1
-
1
n+3

=
1
2
(
1
2
+
1
3
-
1
n+2
-
1
n+3
)

=
1
2
(
5
6
-
1
n+2
-
1
n+3
)

=
5
12
-(
1
n+2
+
1
n+3
)
5
12

∴b1+b2+…+bn
5
12
点评:本题考查等差数列的证明,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网