题目内容
已知数列{an}的前n项和为Sn,a1=
,Sn=n2an-n(n-1),n=1,2,…
(1)证明:数列{
Sn}是等差数列,并求Sn;
(2)设bn=
,求证:b1+b2+…+bn<
.
| 1 |
| 2 |
(1)证明:数列{
| n+1 |
| n |
(2)设bn=
| Sn |
| n3+3n2 |
| 5 |
| 12 |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件得Sn=n2(Sn-Sn-1)-n(n-1),从而
Sn=
Sn-1+1,由此能证明数列{
Sn}是首项为1,公差为1的等差数列,从而得到Sn=n×
=
.
(2)由bn=
=
×
=
=
(
-
),利用裂项求和法能证明b1+b2+…+bn<
.
| n2-1 |
| n(n-1) |
| n2 |
| n(n-1) |
| n+1 |
| n |
| n |
| n+1 |
| n2 |
| n+1 |
(2)由bn=
| Sn |
| n3+3n2 |
| n2 |
| n+1 |
| 1 |
| n2(n+3) |
| 1 |
| (n+1)(n+3) |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+3 |
| 5 |
| 12 |
解答:
(1)证明:∵数列{an}的前n项和为Sn,a1=
,Sn=n2an-n(n-1),
∴n≥2时,有an=Sn-Sn-1,
∴Sn=n2(Sn-Sn-1)-n(n-1),
∴(n2-1)Sn=n2Sn-1+n(n-1),
∴
Sn=
Sn-1+1,
∴
Sn=
Sn-1+1,
又
S1=
a1=1,
∴数列{
Sn}是首项为1,公差为1的等差数列,
∴
Sn=1+(n-1)×1=n,
∴Sn=n×
=
.
(2)bn=
=
×
=
=
(
-
),
∴b1+b2+…+bn=
(
-
+
-
+
-
+…+
-
)
=
(
+
-
-
)
=
(
-
-
)
=
-(
+
)<
.
∴b1+b2+…+bn<
.
| 1 |
| 2 |
∴n≥2时,有an=Sn-Sn-1,
∴Sn=n2(Sn-Sn-1)-n(n-1),
∴(n2-1)Sn=n2Sn-1+n(n-1),
∴
| n2-1 |
| n(n-1) |
| n2 |
| n(n-1) |
∴
| n+1 |
| n |
| n |
| n-1 |
又
| 2 |
| 1 |
| 2 |
| 1 |
∴数列{
| n+1 |
| n |
∴
| n+1 |
| n |
∴Sn=n×
| n |
| n+1 |
| n2 |
| n+1 |
(2)bn=
| Sn |
| n3+3n2 |
| n2 |
| n+1 |
| 1 |
| n2(n+3) |
| 1 |
| (n+1)(n+3) |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+3 |
∴b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| n+1 |
| 1 |
| n+3 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+2 |
| 1 |
| n+3 |
=
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| n+2 |
| 1 |
| n+3 |
=
| 5 |
| 12 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 5 |
| 12 |
∴b1+b2+…+bn<
| 5 |
| 12 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目