题目内容
若{an}为等差数列,则下列数列中:
(1){pan}; (2){nan}; (3){an2}; (4){an+an+1}.
(其中p,q为常数)等差数列有 .
(1){pan}; (2){nan}; (3){an2}; (4){an+an+1}.
(其中p,q为常数)等差数列有
考点:等差数列的性质
专题:等差数列与等比数列
分析:利用等差数列的定义只要证明bn+1-bn=常数即可证明数列{bn}是等差数列.
解答:
解:设等差数列{an}的公差为d,an=a1+(n-1)d,
(1)pan+1-pan=p(an+1-an)=pd为常数,因此{pan}是等差数列;
(2)(n+1)an+1-nan=a1+2nd不是常数,因此{nan}不是等差数列.
(3)an+12-an2=(an+1+an)(an+1-an)=d[2a1+(2n-1)d]不为常数,因此{an2}不是等差数列;
(4)(an+1+an+2)-(an+an+1)=an+2-an=2d为常数,因此{an+an+1}是等差数列,
综上可知:只有(1),(4)是等差数列.
故答案为:(1),(4).
(1)pan+1-pan=p(an+1-an)=pd为常数,因此{pan}是等差数列;
(2)(n+1)an+1-nan=a1+2nd不是常数,因此{nan}不是等差数列.
(3)an+12-an2=(an+1+an)(an+1-an)=d[2a1+(2n-1)d]不为常数,因此{an2}不是等差数列;
(4)(an+1+an+2)-(an+an+1)=an+2-an=2d为常数,因此{an+an+1}是等差数列,
综上可知:只有(1),(4)是等差数列.
故答案为:(1),(4).
点评:本题考查等差数列的证明,正确运用等差数列的定义是关键.
练习册系列答案
相关题目