ÌâÄ¿ÄÚÈÝ
8£®ÎªÍÆÐС°Ð¿ÎÌá±½Ìѧ·¨£¬Ä³µØÀíÀÏʦ·Ö±ðÓô«Í³·½·¨ºÍ¡°Ð¿ÎÌá±Á½ÖÖ²»Í¬µÄ½Ìѧ·½·¨£¬Ôڼס¢ÒÒÁ½¸öƽÐа༶½øÐнÌѧʵÑ飬ΪÁ˱ȽϽÌѧЧ¹û£¬ÆÚÖп¼ÊԺ󣬷ֱð´ÓÁ½¸ö°à¼¶Öи÷Ëæ»ú³éÈ¡20ÃûѧÉúµÄ³É¼¨½øÐÐͳ¼Æ£¬½á¹ûÈçÏÂ±í£º¼Ç³É¼¨²»µÍÓÚ70·ÖÕßΪ¡°³É¼¨ÓÅÁ¼¡±£®| ·ÖÊý | [50£¬59£© | [60£¬69£© | [70£¬79£© | [80£¬89£© | [90£¬100£© |
| ¼×°àƵÊý | 5 | 6 | 4 | 4 | 1 |
| ÒÒ°àÆµÊý | 1 | 3 | 6 | 5 |
| ¼×°à | ÒÒ°à | ×Ü¼Æ | |
| ³É¼¨ÓÅÁ¼ | |||
| ³É¼¨²»ÓÅÁ¼ | |||
| ×Ü¼Æ |
ÁÙ½çÖµ±í£º
| P£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
·ÖÎö £¨1£©ÀûÓÃÆµÊýÓëÆµÂÊ£¬Çó½âÁ½¸ö°àµÄ³É¼¨£¬µÃµ½2¡Á2ÁÐÁª±íÖеÄÊý¾Ý£¬Çó³öK2µÄ¹Û²âÖµ£¬Åжϼ´¿É£®
£¨2£©Óɱí¿ÉÖªÔÚ8ÈËÖгɼ¨²»ÓÅÁ¼µÄÈËÊýΪ$\frac{15}{40}¡Á8=3$£¬ÔòXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬Çó³ö¸ÅÂÊ£¬µÃµ½·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû¼´¿É£®
½â´ð ½â£º£¨1£©
| ¼×°à | ÒÒ°à | ×Ü¼Æ | |
| ³É¼¨ÓÅÁ¼ | 9 | 16 | 25 |
| ³É¼¨²»ÓÅÁ¼ | 11 | 4 | 15 |
| ×Ü¼Æ | 20 | 20 | 40 |
¡àÄÜÔÚ·¸´í¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏÂÈÏΪ¡°³É¼¨ÓÅÁ¼Óë½Ìѧ·½Ê½Óйء±£®
£¨2£©Óɱí¿ÉÖªÔÚ8ÈËÖгɼ¨²»ÓÅÁ¼µÄÈËÊýΪ$\frac{15}{40}¡Á8=3$£¬ÔòXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬$P£¨X=0£©=\frac{{C_{11}^3}}{{C_{15}^3}}=\frac{33}{91}$£¬$P£¨X=1£©=\frac{{C_{11}^2C_4^1}}{{C_{15}^3}}=\frac{44}{91}$£¬$P£¨X=2£©=\frac{{C_{11}^1C_4^2}}{{C_{15}^3}}=\frac{66}{455}$£¬$P£¨X=0£©=\frac{C_4^3}{{C_{15}^3}}=\frac{4}{455}$£®
¡àXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{33}{91}$ | $\frac{44}{91}$ | $\frac{66}{455}$ | $\frac{4}{455}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÔËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÒÔ¼°ÆÚÍûµÄÇ󷨣¬¶ÀÁ¢¼ìÑéµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÒÑÖªÓɲ»µÈʽ$\left\{{\begin{array}{l}{x¡Ýy}\\{y¡Ý0}\\{x+y-4¡Ü0}\end{array}}\right.$ËùÈ·¶¨µÄÆ½ÃæÇøÓòΪM£¬Óɲ»µÈʽx2+y2¡Ü8ËùÈ·¶¨µÄÆ½ÃæÇøÓòΪN£¬ÇøÓòMÄÚËæ»ú³éȡһ¸öµã£¬¸ÃµãͬʱÂäÔÚÇøÓòNÄڵĸÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{2}$ | C£® | $\frac{¦Ð}{16}$ | D£® | $\frac{¦Ð}{4}$ |
3£®ÒÑÖª¼¯ºÏA={x|£¨x-1£©£¨3-x£©£¼0}£¬B={x|-2¡Üx¡Ü2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A£® | [-2£¬1£© | B£® | £¨1£¬2] | C£® | [-2£¬-1£© | D£® | £¨-1£¬2] |
13£®¡°a=-1¡±ÊÇ¡°Ö±Ïßx+ay=1ÓëÖ±Ïßax+y=5ƽÐС±µÄ£¨¡¡¡¡£©Ìõ¼þ£®
| A£® | ³ä·Öµ«²»±ØÒª | B£® | ±ØÒªµ«²»³ä·Ö | ||
| C£® | ³ä·Ö | D£® | ¼È²»³ä·ÖÒ²²»±ØÒª |