题目内容
20.PD=PC=4,AB=6,BC=3.
(1)证明:BC⊥PD
(2)证明:求点C到平面PDA的距离.
分析 (1)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;
(2)利用等体积法,求点C到平面PDA的距离.
解答 (1)证明:因为四边形ABCD是长方形,所以BC⊥CD,![]()
因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC?面ABCD,
所以BC⊥平面PDC,
因为PD?平面PDC,
所以BC⊥PD;
(2)解:取CD的中点E,连接AE和PE,
因为PD=PC,所以PE⊥CD,
在Rt△PED中,PE=$\sqrt{16-9}$=$\sqrt{7}$.
因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE?平面PDC,
所以PE⊥平面ABCD.
由(1)知:BC⊥平面PDC,
因为四边形ABCD是长方形,所以BC∥AD,
所以AD⊥平面PDC,
因为PD?平面PDC,所以AD⊥PD.
设点C到平面PDA的距离为h.
因为VC-PDA=VP-ACD,
所以h=$\frac{\frac{1}{2}×3×6×\sqrt{7}}{\frac{1}{2}×3×4}$=$\frac{3\sqrt{7}}{2}$,所以点C到平面PDA的距离是$\frac{3\sqrt{7}}{2}$.
点评 本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
15.在正方体ABCD-A1B1C1D1中,E是棱D1C1的中点,则异面直线D1B、EC的夹角的余弦值为( )
| A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{15}}}{5}$ |
8.为推行“新课堂”教学法,某地理老师分别用传统方法和“新课堂”两种不同的教学方法,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
临界值表:
(2)先从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.
| 分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 |
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
5.已知M是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左支上一点,A、F分别为双曲线的右顶点和左焦点,且△MAF为等边三角形,则双曲线C的离心率为( )
| A. | 2 | B. | 4 | C. | $\sqrt{5}$-1 | D. | $\sqrt{5}$+1 |
12.一次考试中,5名学生的数学、物理成绩如下:
求y关于x的线性回归方程.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学x(分) | 89 | 91 | 93 | 95 | 97 |
| 物理y(分) | 87 | 89 | 89 | 92 | 93 |
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
9.已知α,β都是锐角,sinα=$\frac{4}{5}$,cosβ=$\frac{5}{13}$,则sin(β-α)=( )
| A. | -$\frac{16}{65}$ | B. | $\frac{16}{65}$ | C. | -$\frac{56}{65}$ | D. | $\frac{56}{65}$ |