题目内容

20.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,
PD=PC=4,AB=6,BC=3.
(1)证明:BC⊥PD
(2)证明:求点C到平面PDA的距离.

分析 (1)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;
(2)利用等体积法,求点C到平面PDA的距离.

解答 (1)证明:因为四边形ABCD是长方形,所以BC⊥CD,
因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC?面ABCD,
所以BC⊥平面PDC,
因为PD?平面PDC,
所以BC⊥PD;
(2)解:取CD的中点E,连接AE和PE,
因为PD=PC,所以PE⊥CD,
在Rt△PED中,PE=$\sqrt{16-9}$=$\sqrt{7}$.
因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE?平面PDC,
所以PE⊥平面ABCD.
由(1)知:BC⊥平面PDC,
因为四边形ABCD是长方形,所以BC∥AD,
所以AD⊥平面PDC,
因为PD?平面PDC,所以AD⊥PD.
设点C到平面PDA的距离为h.
因为VC-PDA=VP-ACD
所以h=$\frac{\frac{1}{2}×3×6×\sqrt{7}}{\frac{1}{2}×3×4}$=$\frac{3\sqrt{7}}{2}$,所以点C到平面PDA的距离是$\frac{3\sqrt{7}}{2}$.

点评 本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网