题目内容

17.已知数列{an}中,其前n项和Sn满足Sn=3an-2(n∈N*
(1)求证:数列{an}为等比数列,并求{an}的通项公式;
(2)设bn=(n+1)•an,求数列{bn}的前n项和Tn

分析 (1)由已知数列递推式求出数列首项,进一步可得当n≥2时,Sn-1=3an-1-2,与原递推式联立可得数列{an}为公比是$\frac{2}{3}$等比数列,并求得通项公式;
(2)把(1)中求得的数列通项公式代入bn=(n+1)•an,利用裂项相消法即可求得数列{bn}的前n项和Tn

解答 (1)证明:由Sn=3an-2,①
得a1=3a1-2,∴a1=1.
当n≥2时,Sn-1=3an-1-2,②
①-②得:an=3an-3an-1,即2an=3an-1
∴$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2}{3}$(n≥2).
∴数列{an}为公比是$\frac{2}{3}$等比数列.
则${a}_{n}=1×(\frac{2}{3})^{n-1}=(\frac{2}{3})^{n-1}$;
(2)解:bn=(n+1)•an=(n+1)•$(\frac{2}{3})^{n-1}$,
∴${T}_{n}=2×(\frac{2}{3})^{0}+3×(\frac{2}{3})^{1}+4×(\frac{2}{3})^{2}+…+$$n(\frac{2}{3})^{n-2}+(n+1)(\frac{2}{3})^{n-1}$,③
∴$\frac{2}{3}{T}_{n}=2×(\frac{2}{3})^{1}+3×(\frac{2}{3})^{2}+…+n(\frac{2}{3})^{n-1}+(n+1)(\frac{2}{3})^{n}$,④
③-④得:$\frac{1}{3}{T}_{n}=2+\frac{2}{3}+(\frac{2}{3})^{2}+…+(\frac{2}{3})^{n-1}-(n+1)(\frac{2}{3})^{n}$=$2+\frac{\frac{2}{3}[1-(\frac{2}{3})^{n-1}]}{1-\frac{2}{3}}-(n+1)(\frac{2}{3})^{n}$
=$2+2[1-(\frac{2}{3})^{n-1}]-(n+1)(\frac{2}{3})^{n}$.
∴${T}_{n}=12-(n+8)•(\frac{2}{3})^{n-1}$.

点评 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的前n项和,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网