题目内容
3.已知集合A={x|(x-1)(3-x)<0},B={x|-2≤x≤2},则A∩B=( )| A. | [-2,1) | B. | (1,2] | C. | [-2,-1) | D. | (-1,2] |
分析 化简集合A,根据交集的定义写出A∩B即可.
解答 解:集合A={x|(x-1)(3-x)<0}
={x|(x-1)(x-3)>0}
={x|<1或x>3},
B={x|-2≤x≤2},
则A∩B={x|-2≤x<1}=[-2,1).
故选:A.
点评 本题考查了集合的化简与运算问题,是基础题目.
练习册系列答案
相关题目
8.为推行“新课堂”教学法,某地理老师分别用传统方法和“新课堂”两种不同的教学方法,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
临界值表:
(2)先从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.
| 分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 |
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
12.一次考试中,5名学生的数学、物理成绩如下:
求y关于x的线性回归方程.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学x(分) | 89 | 91 | 93 | 95 | 97 |
| 物理y(分) | 87 | 89 | 89 | 92 | 93 |
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.