题目内容

定义:若一个数列每相邻两项的和都等于同一个常数,则称这个数列为等和数列,这个常数叫做公和.同样道理,若一个数列每相邻两项的积都等于同一个常数,则称这个数列为等积数列,这个常数叫做公积,已知数列{an}是首项为1,公和为4的等和数列,前n项和为Sn,数列{bn}是首项为1,公积为4的等积数列,前n项和为
Tn,则
S2012
T2012
=
 
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:由题意可得,an+an+1=4,bnbn+1=4,由递推公式可求解数列的通项公式,进而求得数列的和.
解答: 解:由题意可得,
an+an+1=4,a1=1,
∴a2=3,a3=1,a4=3,…
∴an=
1n为奇数
3n为偶数

∴s2012=
2012
2
(1+3)=4024
又bnbn+1=4,
∵b1=1
∴b2=4,b3=1,b4=4,…,
∴bn=
1n为奇数
4n为偶数

∴T2012=
2012
2
(1+4)=5030,
S2012
T2012
=
4024
5030
=
4
5

故答案为:
4
5
点评:此题的思想方法要抓住给出的信息,观察数列的规律,总结出项数与项之间的关系,求出通项公式时需要分类讨论,一定清楚奇数项数与偶数项数,否则容易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网