题目内容
9.化简:(1)sin($\frac{π}{6}$-2π)cos($\frac{π}{4}$+π)
(2)sin($\frac{π}{4}$+$\frac{5π}{2}$)
分析 由条件利用诱导公式进行化简所给的式子,可得结果.
解答 解:(1)sin($\frac{π}{6}$-2π)cos($\frac{π}{4}$+π)=sin$\frac{π}{6}$•(-cos$\frac{π}{4}$)=$\frac{1}{2}$•(-$\frac{\sqrt{2}}{2}$)=-$\frac{\sqrt{2}}{4}$.
(2)sin($\frac{π}{4}$+$\frac{5π}{2}$)=sin($\frac{π}{4}$+$\frac{π}{2}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$.
点评 本题主要考查利用诱导公式进行化简求值,要特别注意符号的选取,这是解题的易错点,属于基础题.
练习册系列答案
相关题目
8.某地铁站每隔10分钟有一趟地铁通过,乘客到达地铁站的任一时刻是等可能的,乘客候车不超过2分钟的概率( )
| A. | $\frac{1}{10}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{4}$ |
20.已知双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}$=1的左右焦点分别为F1,F2,若双曲线左支上有一点M到右焦点F2距离为18,N为F2中点,O为坐标原点,则|NO|等于( )
| A. | $\frac{2}{3}$ | B. | 1 | C. | 2 | D. | 4 |
14.已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁UB⊆A,则实数a的取值范围是( )
| A. | (1,+∞) | B. | [1,+∞) | C. | (2,+∞) | D. | [2,+∞) |
1.如果复数在z=$\frac{3-i}{2+i}$,则|z|等于( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 2 |