题目内容

已知
sin(
π
2
-x)+sin(π-x)
cos(-x)+sin(2π-x)
=2,则tan(x+
4
)的值为 (  )
A、2
B、-2
C、
1
2
D、-
1
2
考点:两角和与差的正切函数,运用诱导公式化简求值
专题:三角函数的求值
分析:直接利用诱导公式化简已知条件,求出正切函数值,利用两角和与差的正切函数求解即可.
解答: 解:已知
sin(
π
2
-x)+sin(π-x)
cos(-x)+sin(2π-x)
=2,
cosx+sinx
cosx-sinx
=2,
∴tanx=
1
3

tan(x+
4
)=
tanx+tan
4
1-tanxtan
4
=
1
3
-1
1+
1
3
=-
1
2

故选:D.
点评:本题考查两角和与差的三角函数,诱导公式的应用,基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网