题目内容
18.①AC1⊥平面A1BD;
②直线AC1与平面A1BD的交点为△A1BD的外心;
③若点P在△A1BD所在平面上运动,则三棱锥P-B1CD1的体积为定值.
其中,正确结论的个数是( )
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
分析 ①根据线面垂直的判定定理进行证明.
②判断三棱锥C1-A1BD是正三棱锥即可.
③根据面面平行的判定定理证明平面B1CD1∥平面A1BD即可.
解答 解:①,在正方体ABCD-A1B1C1D1中,
∵CC1⊥上底面ABCD,
∴CC1⊥BD,
又ABCD为正方形,
∴AC⊥BD,
AC∩CC1=C,
∴BD⊥面ACC1,
∴AC1⊥BD,
同理得到AC1⊥A1B,
又A1B∩BD=B,
∴AC1⊥平面A1BD,①正确;
②在正方体中,A1B=A1D=BD,
则△A1BD为正三角形,
同时三棱锥C1-A1BD是正三棱锥,
则C1在面A1BD的射影为△A1BD的外心;
∵AC1⊥平面A1BD;
∴直线AC1与平面A1BD的交点为△A1BD的外心.故②正确,
③∵B1C∥A1D,CD1∥A1B,且B1C∩CD1=C,
∴平面B1CD1∥平面A1BD,
即点P到平面的B1CD1距离为定值,
∴若点P在△A1BD所在平面上运动,则三棱锥P-B1CD1的体积为定值.故③正确,
故3个命题都正确,
故选:D
点评 本题主要考查命题的真假判断,根据空间直线和平面平行或垂直的判定定理是解决本题的关键.考查学生的推理能力.
练习册系列答案
相关题目
7.己知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若函数g(x)=f(sinx),则函数g(x)的最大值是( )
| A. | -$\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 不存在 |
8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点A作斜率为l的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{AB}$=$\overrightarrow{BC}$,且以焦点为圆心,与渐近线相切的圆的面积为π,则此双曲线的离心率为( )
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{2}$ |