ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Èô²âµÃ¦Á=60¡ã¡¢¦Â=30¡ã£¬ÊÔÇóHµÄÖµ£»
£¨2£©¾¹ý·ÖÎöÈô¸É´Î²âµÃµÄÊý¾Ýºó£¬´ó¼ÒÒ»ÖÂÈÏΪÊʵ±µ÷Õû±ê¸Ëµ½Ê÷ľµÄ¾àÀëd£¨µ¥Î»£ºm£©£¬Ê¹¦ÁÓë¦ÂÖ®²î½Ï´óʱ£¬¿ÉÒÔÌá¸ß²âÁ¿¾«È·¶È£®
ÈôÊ÷ľµÄʵ¼Ê¸ß¶ÈΪ8m£¬ÊÔÎÊdΪ¶àÉÙʱ£¬¦Á-¦Â×î´ó£¿
·ÖÎö £¨1£©ÔÚRt¡÷ABEÖпɵÃAD=$\frac{H}{tan¦Â}$£¬ÔÚRt¡÷ADEÖпɵÃAB=$\frac{H}{tan¦Á}$£¬BD=$\frac{h}{tan¦Â}$£¬ÔÙ¸ù¾ÝAD-AB=DB¼´¿ÉµÃµ½H£®
£¨2£©ÏÈÓÃd·Ö±ð±íʾ³ötan¦ÁºÍtan¦Â£¬ÔÙ¸ù¾ÝÁ½½ÇºÍ¹«Ê½£¬ÇóµÃtan£¨¦Á-¦Â£©£¬ÕûÀí³É»ù±¾²»µÈʽµÄÐÎʽ£¬ÔÙ¸ù¾Ý»ù±¾²»µÈʽ¿ÉÇóµÃtan£¨¦Á-¦Â£©ÓÐ×î´óÖµ¼´¦Á-¦ÂÓÐ×î´óÖµ£¬µÃµ½´ð°¸£®
½â´ð ½â£º£¨1£©ÔÚRt¡÷ABEÖпɵÃAD=$\frac{H}{tan¦Â}$£¬
ÔÚRt¡÷ADEÖпɵÃAB=$\frac{H}{tan¦Á}$£¬BD=$\frac{h}{tan¦Â}$£¬
ÓÉAD-AB=DB£¬¹ÊµÃ$\frac{H}{tan¦Â}-\frac{H}{tan¦Á}=\frac{h}{tan¦Â}$£¬
µÃ£ºH=$\frac{htan¦Á}{tan¦Á-tan¦Â}$=$\frac{4¡Á\sqrt{3}}{\sqrt{3}-\frac{\sqrt{3}}{3}}$=6£®
Òò´Ë£¬Ëã³öµÄÊ÷ľµÄ¸ß¶ÈHÊÇ6m£®
£¨2£©ÓÉÌâÉèÖªd=AB£¬µÃtan¦Á=$\frac{H}{d}$£¬tan¦Â=$\frac{H}{AD}$=$\frac{h}{BD}$=$\frac{H-h}{d}$£¬
tan£¨¦Á-¦Â£©=$\frac{tan¦Á-tan¦Â}{1+tan¦Átan¦Â}$=$\frac{\frac{H}{d}-\frac{H-h}{d}}{1+\frac{H}{d}•\frac{H-h}{d}}$=$\frac{hd}{{d}^{2}+H£¨H-h£©}$=$\frac{h}{d+\frac{H£¨H-h£©}{d}}$
$¡Ü\frac{h}{2\sqrt{d•\frac{H£¨H-h£©}{d}}}$=$\frac{h}{2\sqrt{H£¨H-h£©}}$£¬£¨µ±ÇÒ½öµ±d=$\sqrt{H£¨H-h£©}$£©Ê±£¬È¡µÈºÅ£©
¹Êµ±H=8ʱ£¬d=4$\sqrt{2}$£¬tan£¨¦Á-¦Â£©×î´ó£®
ÒòΪ0£¼¦Â£¼¦Á£¼$\frac{¦Ð}{2}$£¬Ôò0£¼¦Á-¦Â£¼$\frac{¦Ð}{2}$£¬ËùÒÔµ±d=4$\sqrt{2}$ʱ£¬¦Á-¦Â×î´ó£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é½âÈý½ÇÐεÄ֪ʶ¡¢Á½½Ç²îµÄÕýÇм°²»µÈʽµÄÓ¦Ó㮵±Éæ¼°×îÖµÎÊÌâʱ£¬¿É¿¼ÂÇÓò»µÈʽµÄÐÔÖÊÀ´½â¾ö£®
| A£® | 1£¬2£¬3£¬4£¬5 | B£® | 2£¬4£¬6£¬8£¬10 | C£® | 4£¬14£¬24£¬34£¬44 | D£® | 5£¬16£¬27£¬38£¬49 |
| ÅŶÓÈËÊý | 0 | 1 | 2 | 3 | 4 | 4ÈË ÒÔÉÏ |
| ƵÂÊ | 0.1 | 0.15 | 0.15 | x | 0.25 | 0.15 |
| A£® | $\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$ | B£® | $\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$ | C£® | $\frac{1}{2}$$\overrightarrow b$-$\overrightarrow a$ | D£® | $\frac{1}{2}$$\overrightarrow b$+$\overrightarrow a$ |
| A£® | 1 | B£® | 0.8 | C£® | 0.6 | D£® | 0.3 |
| A£® | R | B£® | ∅ | C£® | R+ | D£® | R- |