题目内容
1.在某超市收银台排队付款的人数及其频率如表:| 排队人数 | 0 | 1 | 2 | 3 | 4 | 4人 以上 |
| 频率 | 0.1 | 0.15 | 0.15 | x | 0.25 | 0.15 |
分析 利用对立事件概率计算公式直接求解.
解答 解:视频率为概率,
由某超市收银台排队付款的人数及其频率表得到至少有2人排队付款的概率为:
p=1-0.1-0.15=0.75.
故答案为:0.75.
点评 本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
练习册系列答案
相关题目
12.某企业生产的一种产品的广告费用x(单位:万元)与销售额y(单位:万元)的统计数据如表:
(1)根据上述数据,求出销售额y(万元)关于广告费用x(万元)的线性回归方程;
(2)如果企业要求该产品的销售额不少于36万元,则投入的广告费用应不少于多少万元?
(参考数值:$\sum_{i=1}^{5}{x}_{i}=15$,$\sum_{i=1}^{5}{y}_{i}=150$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}=570$,$\sum_{i=1}^{5}{{x}_{i}}^{2}=55$,$\sum_{i=1}^{5}{{y}_{i}}^{2}=6000$.
回归直线的斜率和截距的最小二乘估计公式分别为:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$)
| 广告费用x | 1 | 2 | 3 | 4 | 5 |
| 销售额y | 10 | 15 | 25 | 45 | 55 |
(2)如果企业要求该产品的销售额不少于36万元,则投入的广告费用应不少于多少万元?
(参考数值:$\sum_{i=1}^{5}{x}_{i}=15$,$\sum_{i=1}^{5}{y}_{i}=150$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}=570$,$\sum_{i=1}^{5}{{x}_{i}}^{2}=55$,$\sum_{i=1}^{5}{{y}_{i}}^{2}=6000$.
回归直线的斜率和截距的最小二乘估计公式分别为:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$)
9.已知函数f(x)=x2+ex-$\frac{1}{2}$(x>0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是( )
| A. | (-$\sqrt{e}$,$\sqrt{e}$) | B. | (-$\sqrt{e}$,+∞) | C. | (-∞,$\sqrt{e}$) | D. | ($\sqrt{e}$,+∞) |
16.(2x+$\frac{a}{x}$)(x-$\frac{2}{x}$)5的展开式中各项系数的和为-1,则该展开式中常数项为( )
| A. | -200 | B. | -120 | C. | 120 | D. | 200 |
6.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x,若其图象是由y=sin2x的图象向左平移φ(φ>0)个单位得到的,则φ的最小值为( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
14.在区间[0,4]内随机选一个实数x,该实数恰好在区间[1,3]内的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |