题目内容

3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),θ∈(0,π),$\overrightarrow{b}$=(1,$\sqrt{3}$),若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则sin2θ=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 利用向量共线定理、三角函数求值即可得出.

解答 解:∵$\overrightarrow{a}∥\overrightarrow{b}$,
则sinθ-$\sqrt{3}$cosθ=0,
∴tanθ=$\sqrt{3}$,θ∈(0,π),
∴θ=$\frac{π}{3}$.
∴sin2θ=$sin\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题考查了向量共线定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网