题目内容

18.已知cos(π+α)•$cos(\frac{π}{2}+α)$=$\frac{60}{169}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求sin α与cos α的值.

分析 由已知利用诱导公式可求2sin α•cos α=$\frac{120}{169}$,结合同角三角函数基本关系式可求:(sin α+cos α)2=$\frac{289}{169}$,(sin α-cos α)2=$\frac{49}{169}$,结合α的范围可求sin α+cos α>0,sin α-cos α>0,可求sin α+cos α=$\frac{17}{13}$,sin α-cos α=$\frac{7}{13}$,联立即可得解.

解答 解:cos(π+α)=-cos α,$cos(\frac{π}{2}+α)$=-sin α.
∴sin α•cos α=$\frac{60}{169}$,即2sin α•cos α=$\frac{120}{169}$.①
又∵sin2α+cos2α=1,②
①+②得(sin α+cos α)2=$\frac{289}{169}$,
②-①得(sin α-cos α)2=$\frac{49}{169}$,
又∵$\frac{π}{4}$<α<$\frac{π}{2}$,
∴sin α>cos α>0,
即sin α+cos α>0,sin α-cos α>0,
∴sin α+cos α=$\frac{17}{13}$,③
sin α-cos α=$\frac{7}{13}$,④
③+④得sin α=$\frac{12}{13}$,③-④得cos α=$\frac{5}{13}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,三角函数的图象和性质在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网