题目内容

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中点.
(Ⅰ)证明:C1D⊥平面BDC;
(Ⅱ)设AA1=2,求几何体C-BC1D的体积.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:(Ⅰ)证明DC1⊥BC,DC1⊥DC,利用线面垂直的判定定理,即可证明C1D⊥平面BDC;
(Ⅱ)利用VC-BC1D=VB-CC1D,求几何体C-BC1D的体积.
解答: (Ⅰ)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1,又DC1?平面ACC1A1
∴DC1⊥BC.
由题设知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,
又DC∩BC=C,
∴C1D⊥平面BDC;(6分)
(2)解:∵ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中点,AA1=2,
∴VC-BC1D=VB-CC1D=
1
3
1
2
•2•1•1=
1
3
.(12分)
点评:本题考查直线与平面垂直的判定,三棱锥体积的计算,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析表达与运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网