ÌâÄ¿ÄÚÈÝ
¹Û²ìÏÂÁбí¸ñ£ºÎÒÃÇ¿ÉÒÔ·¢ÏÖ£¨ÓÃa£¬b£¬c±íʾÈý¸öÊý£¬ÇÒa£¼b£¼c£©£º
£¨1£©a2+b2 c2
£¨2£©×îСֵaÊÇÒ»¸ö Êý£¨Ìî¡°Ææ¡±»ò¡°Å¼¡±£©£¬ÆäÓàÁ½¸öÊýb£¬cÊÇ µÄÁ½¸öÕýÕûÊý
£¨3£©×îÐ¡ÆæÊýµÄƽ·½µÈÓÚÁíÍâÁ½¸öÕûÊýµÄ
£¨4£©xÊÇ´óÓÚ1µÄÆæÊý£¬½«x2²ð·Ö³ÉÁ½¸öÁ¬ÐøÕûÊýy£¬y+1µÄºÍ£¬ÊÔÖ¤Ã÷£ºx£¬y£¬y+1ÊÇÒ»×é¹´¹ÉÊý
£¨5£©Çó³ö±í¸ñÖеÄb£¬cµÄÖµ£®
| 3£¬4£¬5 | 32+42=52 |
| 5£¬12£¬13 | 52+122=132 |
| 7£¬24£¬25 | 72+242=252 |
| 9£¬40£¬41 | 92+402=412 |
| ¡ | ¡ |
| 21£¬b£¬c | 212+b2=c2 |
£¨2£©×îСֵaÊÇÒ»¸ö
£¨3£©×îÐ¡ÆæÊýµÄƽ·½µÈÓÚÁíÍâÁ½¸öÕûÊýµÄ
£¨4£©xÊÇ´óÓÚ1µÄÆæÊý£¬½«x2²ð·Ö³ÉÁ½¸öÁ¬ÐøÕûÊýy£¬y+1µÄºÍ£¬ÊÔÖ¤Ã÷£ºx£¬y£¬y+1ÊÇÒ»×é¹´¹ÉÊý
£¨5£©Çó³ö±í¸ñÖеÄb£¬cµÄÖµ£®
¿¼µã£º¹éÄÉÍÆÀí
רÌâ£ºÍÆÀíºÍÖ¤Ã÷
·ÖÎö£º¸ù¾Ý±íÖÐÊý¾Ý²»ÄÑ·¢ÏÖa2+b2=c2£¬×îСֵaÊÇÒ»¸öÆæÊý£¬b£¬cÊÇÁ¬ÐøµÄÁ½¸öÕýÕûÊý£¬½ø¶ø¿ÉµÃ´ð°¸£®
½â´ð£º
½â£º¡ß32+42=52£¬52+122=132£¬72+242=252£¬92+402=412£¬¡£¬
¹éÄɿɵãº
£¨1£©a2+b2=c2£¬
£¨2£©×îСֵaÊÇÒ»¸öÆæÊý£¬b£¬cÊÇÁ¬ÐøµÄÁ½¸öÕýÕûÊý£¬
£¨3£©×îÐ¡ÆæÊýµÄƽ·½µÈÓÚÁíÍâÁ½¸öÕûÊýµÄƽ·½²î£¬
¼´a2=c2-b2£¬
Ö¤Ã÷£º£¨4£©¡ßx2=y+£¨y+1£©£¬
¡à£¨y+1£©2-y2=£¨y+1-y£©£¨y+1+y£©=y+£¨y+1£©=x2£¬
¼´x2+y2=£¨y+1£©2£¬
¼´x£¬y£¬y+1ÊÇÒ»×é¹´¹ÉÊý£»
£¨5£©¡ß212+b2=c2£¬
¡àc=b+1£¬ÇÒb+c=212=441£¬
½âµÃ£ºb=220£¬c=221
¹Ê´ð°¸Îª£º=£¬Ææ£¬Á¬Ðø£¬Æ½·½²î
¹éÄɿɵãº
£¨1£©a2+b2=c2£¬
£¨2£©×îСֵaÊÇÒ»¸öÆæÊý£¬b£¬cÊÇÁ¬ÐøµÄÁ½¸öÕýÕûÊý£¬
£¨3£©×îÐ¡ÆæÊýµÄƽ·½µÈÓÚÁíÍâÁ½¸öÕûÊýµÄƽ·½²î£¬
¼´a2=c2-b2£¬
Ö¤Ã÷£º£¨4£©¡ßx2=y+£¨y+1£©£¬
¡à£¨y+1£©2-y2=£¨y+1-y£©£¨y+1+y£©=y+£¨y+1£©=x2£¬
¼´x2+y2=£¨y+1£©2£¬
¼´x£¬y£¬y+1ÊÇÒ»×é¹´¹ÉÊý£»
£¨5£©¡ß212+b2=c2£¬
¡àc=b+1£¬ÇÒb+c=212=441£¬
½âµÃ£ºb=220£¬c=221
¹Ê´ð°¸Îª£º=£¬Ææ£¬Á¬Ðø£¬Æ½·½²î
µãÆÀ£º±¾Ì⿼²é¹éÄÉÍÆÀí£¬¹éÄÉÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©Í¨¹ý¹Û²ì¸ö±ðÇé¿ö·¢ÏÖijЩÏàͬÐÔÖÊ£»£¨2£©´ÓÒÑÖªµÄÏàͬÐÔÖÊÖÐÍÆ³öÒ»¸öÃ÷È·±í´ïµÄÒ»°ãÐÔÃüÌ⣨²ÂÏ룩£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª|
|=1£¬|
|=2£¬
•£¨
-
£©=-2£¬ÔòÏòÁ¿
Óë
µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
| a |
| b |
| a |
| b |
| a |
| a |
| b |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
º¯Êýy=x3µÄͼÏóÔÚԵ㴦µÄÇÐÏß·½³ÌΪ£¨¡¡¡¡£©
| A¡¢y=x | B¡¢x=0 |
| C¡¢y=0 | D¡¢²»´æÔÚ |