题目内容

已知数列{an}满足a1=1,n(an+1-an)=an+n2+n,n∈N*
(1)证明:数列{
an
n
}是等差数列;
(2)设an=(
2nbn
32n+1
2,求正项数列{bn}的前n项和Sn
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知得nan+1=(n+1)an+n2+n,n∈N*,从而
an+1
n+1
-
an
n
=1,
a1
1
=1
,由此能证明数列{
an
n
}是以1为首项,以1为公差的等差数列.
(2)由an=n2,得an=(
2nbn
32n+1
2=n2,正项数列{bn},从而bn=
1
2
×32n+1
,由此能求出正项数列{bn}的前n项和Sn
解答: (1)证明:∵数列{an}满足a1=1,n(an+1-an)=an+n2+n,n∈N*
∴nan+1=(n+1)an+n2+n,n∈N*
an+1
n+1
-
an
n
=1,
a1
1
=1

∴数列{
an
n
}是以1为首项,以1为公差的等差数列.
(2)解:∵数列{
an
n
}是以1为首项,以1为公差的等差数列,
an
n
=n,∴an=n2
∴an=(
2nbn
32n+1
2=n2,正项数列{bn},
∴bn=
1
2
×32n+1

∴Sn=
1
2
(33+35+…+32n+1
=
1
2
×
27(1-9n)
1-9

=-
27
16
(1-9n).
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意构造法和等差数列、等比数列的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网