题目内容

已知函数f(x)满足对任意的x∈R都有f(
1
2
+x)+f(
1
2
-x)=1成立,则f(
1
8
)+f(
2
8
)+…+f(
7
8
)=
 
考点:函数的值
专题:函数的性质及应用
分析:由题意得两个式子相加可得[f(
1
8
)+f(
7
8
)]+[f
2
8
)+f(
6
8
)]+…+[f(
7
8
)+f(
1
8
)]=2M,利用f(
1
2
+x)+f(
1
2
-x)=1,推出f(
1
8
)+f(
2
8
)+…+f(
7
8
)=7
解答: 解:设f(
1
8
)+f(
2
8
)+…+f(
7
8
)=M…①
所以f(
7
8
)+f(
6
8
)+…+f(
1
8
)=M…②
①+②可得[f(
1
8
)+f(
7
8
)]+[f
2
8
)+f(
6
8
)]+…+[f(
7
8
)+f(
1
8
)]=2M,
因为函数f(x)满足对任意的x∈R都有f(
1
2
+x)+f(
1
2
-x)=1成立
所以7=2M即M=
7
2

所以f(
1
8
)+f(
2
8
)+…+f(
7
8
)=
7
2

故答案为:
7
2
点评:本题考查了利用函数的对称性求和,解决本题的关键是发现函数与和式的对称性,利用倒叙相加法求和.此法在数列部分常见,也是一种求和的重要方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网